

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road, Puttur – 517583 <u>QUESTION BANK</u>

Subject with Code : Applied Chemistry (19HS0801) Year & Sem: I-B.Tech & II-Sem Course & Branch: B.Tech (CSE & CSIT) Regulation: R19

UNIT-I

ELECTROCHEMISTRY AND APPLICATIONS

1. a) What is Electrochemical cell ? Give an example.	[L1] [CO1] [7M]	
b) Calculate the single electrode potential of zinc in 0.05M ZnSO ₄ solution at 25 ⁰ C.		
$E^0 z_{n/Zn}^{2+} = 0.763 V.$	[L3] [CO1] [5M]	
2. Define Electrode Potential. Derive the Nernst equation for a single electrode potential and		
write its applications.	[L1] [CO1] [12M]	
3. Write a note on		
a) Potentiometric Titrations (Redox Titrations)	[L2] [CO1] [5M]	
b) Hydrogen-Oxygen fuel cell .	[L2] [CO1] [7M]	
4. Define Conductometric titrations. Discuss all types of Acid-Base Conductometric titrations and Explain the nature of the graphs b/n conductance and volume of titrant used. [L3] [C01] [12M]		
and Explain the nature of the graphs b/n conductance and volume of titrant u5. Define Photovoltaic cell. Explain construction, working and applications of	sed. [L3] [CO1] [12M] [L4] [CO1] [12M]	
 and Explain the nature of the graphs b/n conductance and volume of titrant u 5. Define Photovoltaic cell. Explain construction, working and applications of photovoltaic cell. 6. Define electrochemical sensor. Draw the neat sketch of electrochemical sensor 	sed. [L3] [CO1] [12M] [L4] [CO1] [12M] r and	
 and Explain the nature of the graphs b/n conductance and volume of titrant u 5. Define Photovoltaic cell. Explain construction, working and applications of photovoltaic cell. 6. Define electrochemical sensor. Draw the neat sketch of electrochemical sensor explain its construction, working principle and applications. 	sed. [L3] [CO1] [12M] [L4] [CO1] [12M] r and [L3] [CO1] [12M]	

8. a) What is primary Battery? Write a brief note on Zinc-Air battery.	[L2] [CO1] [7M]
b) Write a short note on Alkali metal sulphide batteries.	[L2] [CO1] [5M]
9. a) What is secondary Battery ? Explain the Construction and working of Lead acid battery.b) Write a note on Lithium Ion rechargeable cell.	[L3] [CO1] [7M] [L3] [CO1] [5M]
10. a) What is a Fuel cell ? Describe the Construction and Working of Methanol – Oxygen Fuel cell .	[L3] [CO1] [7M]
b) Write a short note on Photo Galvanic cell	[L1] [CO1] [5M]

UNIT -II STRUCTURE AND BONDING MODELS

1. a) Explain Planck's Quantum Theory.	[L2] [CO2] [5M]	
b) Write a brief note on particle in one dimensional box.	[L1] [CO2] [7M]	
2. Derive Schrodinger wave equation? Explain the significance of the Ψ and Ψ^2	. [L3] [CO2] [12M]	
3. a) Explain pi- molecular orbital's of Butadiene with a neat sketch.	[L4] [CO2] [6M]	
b) Explain pi- molecular orbital of Benzene with a neat sketch.	[L4] [CO2] [5M]	
4. a) Write De-Broglie's equation.	[L1] [CO2] [6M]	
b) Explain Heisenberg Uncertainty principle.	[L4] [CO2] [6M]	
 Draw the molecular orbital diagrams of Oxygen molecule (O₂) and Nitrogen m (N₂). Explain their magnetic nature and bond order. 	olecule [L4] [CO2] [12M]	
6. Explain the energy level diagrams of CO and NO molecule. Explain their magnetic		
nature and Bond order.	[L4] [CO2] [12M]	
7. a) Explain the band theory of solids.	[L4] [CO2] [5M]	
b) What is doping? Explain the role of doping on band structures.	[L2] [CO2] [7M]	
8. a) Explain the application of Ψ and Ψ^2 to hydrogen atom.	[L4] [CO2] [6M]	
b) Write the postulates of molecular orbital theory.	[L1] [CO2] [6M]	
 What is Crystal field theory? Explain the crystal field splitting in octahedral and tetrahedral Complexes. [L4] [CO2] [12M] 		
10. Draw the band diagrams of Conductors, Semiconductors and Insulators.	[L2] [CO2] [12M]	

UNIT III POLYMER CHEMISTRY

1. a) What is functionality of monomer?	[L1] [CO3] [5M]
b) Write a note on nomenclature of polymers.	[L1] [CO3] [7M]
2. Explain the following mechanism with examples.	
a) Free radical addition polymerization.b) Cationic addition polymerization.	[L4] [CO3] [6M] [L4] [CO3] [6M]
3. Explain the following mechanism with examples.	
a) Anionic addition polymerization.	[L4] [CO3] [6M]
b) Co-ordination or Ziegler-Natta polymerization.	[L4] [CO3] [6M]
4. Explain the following mechanism with examples.	
a) Condensation or Step growth polymerization.	[L4] [CO3] [6M]
b) Co-polymerization.	[L4] [CO3] [6M]
5. Explain the mechanism of Addition polymerization.	[L4] [CO3] [12M]
6. a) Distinguish between Thermoplastics and thermosetting plastics.	[L3] [CO3] [6M]
b) Describe the preparation, properties and uses of Bakelite.	[L2] [CO3] [6M]
7. a) Describe the preparation, properties and uses of Nylon-6,6.	[L2] [CO3] [5M]
b) Describe the preparation, properties and uses of Carbon Fibers	[L2] [CO3] [7M]
8. What are conducting polymers? How are they classified? Write the synthesis and Engineering applications of conducting polymers.	[L5] [CO3] [12M]
9. Write the preparation, properties and application of Buna-S rubber and Buna-N rubber	[L2] [CO3] [12M]
10. a) Write a note on Thermoplastic and Thermosetting resin.	[L2] [CO3] [6M]
b) Write the preparation, properties and uses of Phenol-Formaldehyde resin.	[L2] [CO3] [6M]

UNIT-IV

INSTRUMENTAL METHODS AND APPLICATIONS

1. a) Write a short note on Beer-Lambert's Law.	[L1] [CO4] [5M]
b) Write a note on atomic absorption and molecular absorption.	[L1] [CO4] [7M]
2. Define P^H ? Write principle and application of P^H metry.	[L2] [CO4] [12M]
3. Explain the working principle of Atomic Absorption Spectrometer(AAS) and H determine the nickel using by AAS?	ow will you [L5] [CO4] [12M]
4. Give an account on principle and instrumentation of IR spectroscopy. Explain stretching and bending vibrations.	[L3] [CO4] [12M]
5. Explain principle & instrumentation of UV-visible spectroscopy with neat diagra	am. [L4][CO4][12M]
6. What is meant by Chromatography ? Define the main parts of an High Performa Chromatography (HPLC).	nce Liquid [L2] [CO4] [12M]
7. a) Explain the principle and instrumentation of Gas Chromatography.	[L4] [CO4] [8M]
b)What are the applications of Gas Chromatography	[L1] [CO4] [4M]
8. Write a note on	
a) Potentiometry	[L2] [CO4] [6M]
b) Conductometry	[L2] [CO4] [6M]
9. Which methods are you using to separate from the Gaseous Mixtures?	[L5] [CO4] [12M]
10. What are the methods do you follow to separate from the Liquid Mixtures?	[L1] [CO4] [12M]

UNIT-V ADVANCED ENGINEERING MATERIALS

1. a) What is basic lock and key principle ?	[L1] [CO5] [6M]
b) Write a short note on Complementarity.	[L1] [CO5] [6M]
2. Write a brief note on Fullerenes and Carbon nano tubes	[L2] [CO5] [12M]
3. Explain the applications of supramolecules in	
a) Sensors ,Gas storage.	[L4] [CO5] [8M]
b) Molecular switches.	[L4] [CO5] [4M]
4. a) Write a note on Liquid Insulating Materials	[L2] [CO5] [5M]
b) Write the Properties of Nanomaterials.	[L2] [CO5] [7M]
5. Explain in detail about principle and application of semiconductors?	[L4] [CO5] [12M]
6. Discuss about Super conductors and their applications?	[L5] [CO5] [12M]
7. a) Define Dielectrics ? What are the characteristics of Electrical Insulators.	[L2] [CO5] [6M]
b) Classification of Insulating material and their applications.	[L2] [CO5] [6M]
8. a) What is meant by Nanomaterials ? How are Nanomaterials Classified.	[L3] [CO5] [4M]
b) How do you apply Catalyst , medical in the application of supramolecules ?	[L5] [CO5] [8M]
9. a)Write an account on Carbon Nano Tubes.	[L2] [CO5] [6M]
b)Write a note on Fullerenes	[L2] [CO5] [6M]
10.a) Write a note on Super Capacitors.	[L2] [CO5] [7M]
b)Write a note on Liquid Insulating Materials.	[L2] [CO5] [5M]